Basic Introduction to Electronics

Electrical current

Symbol: *i*

Unit: Ampere (A)

For example: 1 mA = 0.001 Amperes

Voltage

Symbol: v

Unit: Volt (V)

For example: 5 V

Circuit elements

Same v

Different *i*

Same v

Different i

Circuit elements

Same v

Different *i*

$$\sum_{up} v = \sum_{down} v$$

KVL Kirchhoff's Voltage Law

$$i_b = i_1 + i_2$$

$$\sum_{in} i = \sum_{out} i$$

KCL Kirchhoff's Current Law

Relationship between *i* an *v*?

$$i = 0$$

$$R = \infty$$

Ohm's Law

R = 0

Resistor

Symbol: R

Unit: ohm (Ω)

For example: $1 k\Omega$

$$v = \int i$$

$$v = i \cdot R$$

$$i = \frac{v}{R}$$

Ohm's Law

Other components

$$v = f(i)$$

$$v = V_{FIXED}$$

if it is on
$$(i > 0)$$

$$v = i \cdot R$$

Rules of the game

Rules of the game

$$\sum_{in} i = \sum_{out} i$$

$$\sum_{up} v = \sum_{down} v$$

Ohm's Law

$$v = i \cdot R$$

If the resistance R is 2 k Ω , the current i is:

- [A] 0 mA
- [B] 2 mA
- [C] 4 mA
- [D] 16 mA
- [E] I don't know

What happens when the resistance *R* is lowered?

- [A] The current *i* increases
- [B] The current i decreases
- [C] The current i stays the same
- [D] The current i cannot be calculated
- [E] I don't know

What happens when the resistance *R* is lowered?

Very bad!

What is the current *i* ?

What is the current i?

No current

If the resistance R is 2 k Ω , the current i is:

If the resistance R is 2 k Ω , the current i is:

When the switch is open, the voltage v_2 is:

- [A] 0 V
- [B] 1 mV
- [C] 1 V
- [D] 4 V
- **[E]** 5 V

When the switch is open, the voltage v_2 is:

- [A] 0 V
- [B] 1 mV
- [C] 1 V
- [D] 4 V
- **[E]** 5 V

